Digital transformation in health: An artificial neural network-based prediction model


DOI:
https://doi.org/10.70736/ijoess.635Keywords:
Artificial neural network, deep learning, digital transformation, health sectorAbstract
Heart diseases remain one of the leading causes of death worldwide, highlighting the urgent need for fast, reliable, and effective diagnostic systems that enable early detection and intervention. This necessity has become more prominent with the increasing integration of digital transformation into the healthcare sector. In this context, advanced technologies such as Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) have become integral components of clinical decision support systems. This study presents the development of a DL model based on Artificial Neural Networks (ANN) for the early diagnosis of heart disease. The dataset, comprising clinical and demographic characteristics of 303 individuals, was obtained from the open-source UCI platform. The data were preprocessed and divided into training and testing sets, and early stopping was applied during training to prevent overfitting. The developed model achieved an accuracy rate of 90.16%, demonstrating superior performance compared to traditional models. These findings suggest that AI and DL-based systems hold significant potential as reliable and effective decision support mechanisms in the healthcare field, particularly in the diagnosis of heart diseases, within the broader framework of digital transformation.
References
Agarwal, R., Gao, G., DesRoches, C., & Jha, A. K. (2010). Research commentary—The digital transformation of healthcare: Current status and the road ahead. Information Systems Research, 21(4), 796-809. https://doi.org/10.1287/isre.1100.0327 DOI: https://doi.org/10.1287/isre.1100.0327
Ahamad, G. N., Shafiullah, Fatima, H., Imdadullah, Zakariya, S. M., Abbas, M., ... et al. (2023). Influence of optimal hyperparameters on the performance of machine learning algorithms for predicting heart disease. Processes, 11(3), 734. https://doi.org/10.3390/pr11030734 DOI: https://doi.org/10.3390/pr11030734
Bachuk, O. (2024). Digital transformation in the health care system. Odesa National University Herald. Economy. https://doi.org/10.32782/2304-0920/3-101-6 DOI: https://doi.org/10.32782/2304-0920/3-101-6
Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. Jama, 319(13), 1317-1318. https://doi.org/10.1001/jama.2017.18391 DOI: https://doi.org/10.1001/jama.2017.18391
Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association, 24(2), 361–370. https://doi.org/10.1093/jamia/ocw112 DOI: https://doi.org/10.1093/jamia/ocw112
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, ... et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056 DOI: https://doi.org/10.1038/nature21056
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24-29. https://doi.org/10.1038/s41591-018-0316-z DOI: https://doi.org/10.1038/s41591-018-0316-z
García-Ordás, M. T., Bayón-Gutiérrez, M., Benavides, C., Aveleira-Mata, J., & Benítez-Andrades, J. A. (2023). Heart disease risk prediction using deep learning techniques with feature augmentation. Multimedia Tools and Applications, 82(20), 31759-31773. https://doi.org/10.1007/s11042-023-14817-z DOI: https://doi.org/10.1007/s11042-023-14817-z
Jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Heart disease prediction using lazy associative classification. In 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s) (pp. 40-46). https://doi.org/10.1109/iMac4s.2013.6526381 DOI: https://doi.org/10.1109/iMac4s.2013.6526381
Jahankhani, H., & Kendzierskyj, S. (2019). Digital transformation of healthcare. Blockchain and Clinical Trial. https://doi.org/10.1007/978-3-030-11289-9_2. DOI: https://doi.org/10.1007/978-3-030-11289-9_2
Jan, M., Awan, A. A., Khalid, M. S., & Nisar, S. (2018). Ensemble approach for developing a smart heart disease prediction system using classification algorithms. Research Reports in Clinical Cardiology, 33-45. https://doi.org/10.2147/RRCC.S172035 DOI: https://doi.org/10.2147/RRCC.S172035
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... et al. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4). https://doi.org/10.1136/svn-2017-000101 DOI: https://doi.org/10.1136/svn-2017-000101
Jung, M. L., & Berthon, P. (2009). Fulfilling the promise: A model for delivering successful online health care. Journal of Medical Marketing, 9(3), 243-254. https://doi.org/10.1057/jmm.2009.26 DOI: https://doi.org/10.1057/jmm.2009.26
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. International Conference on Learning Representations (ICLR). https://doi.org/10.48550/arXiv.1412.6980
Kumar, M. N., Koushik, K. V. S., & Deepak, K. (2018). Prediction of heart diseases using data mining and machine learning algorithms and tools. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 3(3), 887-898.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005 DOI: https://doi.org/10.1016/j.media.2017.07.005
Mas, D., Massaro, M., Rippa, P., & Secundo, G. (2023). The challenges of digital transformation in healthcare: An interdisciplinary literature review, framework, and future research agenda. Technovation. https://doi.org/10.1016/j.technovation.2023.102716. DOI: https://doi.org/10.1016/j.technovation.2023.102716
Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 7, 81542-81554. https://doi.org/10.1109/ACCESS.2019.2923707 DOI: https://doi.org/10.1109/ACCESS.2019.2923707
Muhammad, Y., Tahir, M., Hayat, M., & Chong, K. T. (2020). Early and accurate detection and diagnosis of heart disease using intelligent computational model. Scientific reports, 10(1), 19747. https://doi.org/10.1038/s41598-020-76635-9 DOI: https://doi.org/10.1038/s41598-020-76635-9
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216-1219. https://doi.org/10.1056/NEJMp1606181 DOI: https://doi.org/10.1056/NEJMp1606181
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358. https://doi.org/10.1056/NEJMra1814259 DOI: https://doi.org/10.1056/NEJMra1814259
Reddy, S., Fox, J., & Purohit, M. P. (2019). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medicine, 112(1), 22-28. https://doi.org/10.1177/0141076818815510 DOI: https://doi.org/10.1177/0141076818815510
Ripan, R. C., Sarker, I. H., Hossain, S. M. M., Anwar, M. M., Nowrozy, R., Hoque, M. M., … et al. (2021). A data-driven heart disease prediction model through K-means clustering-based anomaly detection. SN Computer Science, 2(2), 112. https://doi.org/10.1007/s42979-021-00518-7 DOI: https://doi.org/10.1007/s42979-021-00518-7
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003 DOI: https://doi.org/10.1016/j.neunet.2014.09.003
Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589-1604. https://doi.org/10.1109/JBHI.2017.2767063 DOI: https://doi.org/10.1109/JBHI.2017.2767063
Taylor, K., Properzi, F., Bhatti, S., & Ferris, K. (2020). Digital transformation—Shaping the future of European healthcare. United Kingdom: Deloitte Centre for Health Solutions.
Topol, E. (2019). Deep medicine: how artificial intelligence can make healthcare human again. Hachette UK.
UCI Machine Learning Repository. (2025). Heart Disease Data Set. Retrieved March 25, 2025, from https://archive.ics.uci.edu/dataset/45/heart+disease
Vîrgolici, O., & Virgolici, H. (2023). Predicting Prediabetes Using Simple a Multi-Layer Perceptron Neural Network Model. In ICIMTH (pp. 168-171). https://doi.org/10.3233/SHTI230453 DOI: https://doi.org/10.3233/SHTI230453
Vrigazova, B. (2021). The proportion for splitting data into training and test set for the bootstrap in classification problems. Business Systems Research: International Journal of the Society for Advancing Innovation and Research in Economy, 12(1), 228-242. https://doi.org/10.2478/bsrj-2021-0015 DOI: https://doi.org/10.2478/bsrj-2021-0015
Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3-13. https://doi.org/10.1016/j.techfore.2015.12.019 DOI: https://doi.org/10.1016/j.techfore.2015.12.019
World Health Organization. (2021). Cardiovascular diseases (CVDs). World Health Organization. Retrieved March 25, 2025, from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Xie, T., Liu, R., & Wei, Z. (2020). Improvement of the fast clustering algorithm improved by K-means in the Big Data. Applied Mathematics & Nonlinear Sciences, 5(1). DOI: https://doi.org/10.2478/amns.2020.1.00001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Eurasia Social Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.