Sağlıkta dijital dönüşüm: Yapay sinir ağı tabanlı bir tahmin modeli


DOI:
https://doi.org/10.70736/ijoess.635Anahtar Kelimeler:
Yapay sinir ağı- derin öğrenme- dijital dönüşüm- sağlık sektörüÖzet
Kalp hastalıkları, dünya genelinde en yaygın ölüm nedenlerinden biri olarak erken teşhis ve müdahale ihtiyacını ön plana çıkarmaktadır. Bu durum, özellikle klinik karar süreçlerinde kullanılmak üzere geliştirilecek hızlı, güvenilir ve etkili tanı sistemlerinin önemini artırmaktadır. Son yıllarda yaşanan dijital dönüşüm, sağlık sektörünü derinden etkilemiş ve bu süreçte yapay zekâ (YZ), makine öğrenmesi (MÖ) ve derin öğrenme (DÖ) gibi ileri teknolojiler klinik karar destek sistemlerinin ayrılmaz bir parçası haline gelmiştir. Bu çalışma kapsamında, kalp hastalıklarının erken tanısına yönelik olarak yapay sinir ağı (YSA) tabanlı bir derin öğrenme modeli geliştirilmiştir. UCI açık veri platformundan elde edilen 303 bireye ait klinik ve demografik özelliklerden oluşan veri seti üzerinde yürütülen bu çalışmada, veriler ön işleme sürecine tabi tutulmuş ve model eğitiminde erken durdurma yöntemi uygulanmıştır. Geliştirilen modelin doğruluk oranı %90,16 olarak elde edilmiş ve geleneksel modellere kıyasla daha yüksek başarı sergilediği görülmüştür. Elde edilen bulgular, dijital dönüşüm sürecinde YZ ve DÖ tabanlı sistemlerin, özellikle kalp hastalıklarının tanısında, güvenilir ve etkin karar destek mekanizmaları olarak önemli bir potansiyele sahip olduğunu göstermektedir.
Referanslar
Agarwal, R., Gao, G., DesRoches, C., & Jha, A. K. (2010). Research commentary—The digital transformation of healthcare: Current status and the road ahead. Information Systems Research, 21(4), 796-809. https://doi.org/10.1287/isre.1100.0327 DOI: https://doi.org/10.1287/isre.1100.0327
Ahamad, G. N., Shafiullah, Fatima, H., Imdadullah, Zakariya, S. M., Abbas, M., ... et al. (2023). Influence of optimal hyperparameters on the performance of machine learning algorithms for predicting heart disease. Processes, 11(3), 734. https://doi.org/10.3390/pr11030734 DOI: https://doi.org/10.3390/pr11030734
Bachuk, O. (2024). Digital transformation in the health care system. Odesa National University Herald. Economy. https://doi.org/10.32782/2304-0920/3-101-6 DOI: https://doi.org/10.32782/2304-0920/3-101-6
Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. Jama, 319(13), 1317-1318. https://doi.org/10.1001/jama.2017.18391 DOI: https://doi.org/10.1001/jama.2017.18391
Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association, 24(2), 361–370. https://doi.org/10.1093/jamia/ocw112 DOI: https://doi.org/10.1093/jamia/ocw112
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, ... et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056 DOI: https://doi.org/10.1038/nature21056
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24-29. https://doi.org/10.1038/s41591-018-0316-z DOI: https://doi.org/10.1038/s41591-018-0316-z
García-Ordás, M. T., Bayón-Gutiérrez, M., Benavides, C., Aveleira-Mata, J., & Benítez-Andrades, J. A. (2023). Heart disease risk prediction using deep learning techniques with feature augmentation. Multimedia Tools and Applications, 82(20), 31759-31773. https://doi.org/10.1007/s11042-023-14817-z DOI: https://doi.org/10.1007/s11042-023-14817-z
Jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Heart disease prediction using lazy associative classification. In 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s) (pp. 40-46). https://doi.org/10.1109/iMac4s.2013.6526381 DOI: https://doi.org/10.1109/iMac4s.2013.6526381
Jahankhani, H., & Kendzierskyj, S. (2019). Digital transformation of healthcare. Blockchain and Clinical Trial. https://doi.org/10.1007/978-3-030-11289-9_2. DOI: https://doi.org/10.1007/978-3-030-11289-9_2
Jan, M., Awan, A. A., Khalid, M. S., & Nisar, S. (2018). Ensemble approach for developing a smart heart disease prediction system using classification algorithms. Research Reports in Clinical Cardiology, 33-45. https://doi.org/10.2147/RRCC.S172035 DOI: https://doi.org/10.2147/RRCC.S172035
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... et al. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4). https://doi.org/10.1136/svn-2017-000101 DOI: https://doi.org/10.1136/svn-2017-000101
Jung, M. L., & Berthon, P. (2009). Fulfilling the promise: A model for delivering successful online health care. Journal of Medical Marketing, 9(3), 243-254. https://doi.org/10.1057/jmm.2009.26 DOI: https://doi.org/10.1057/jmm.2009.26
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. International Conference on Learning Representations (ICLR). https://doi.org/10.48550/arXiv.1412.6980
Kumar, M. N., Koushik, K. V. S., & Deepak, K. (2018). Prediction of heart diseases using data mining and machine learning algorithms and tools. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 3(3), 887-898.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005 DOI: https://doi.org/10.1016/j.media.2017.07.005
Mas, D., Massaro, M., Rippa, P., & Secundo, G. (2023). The challenges of digital transformation in healthcare: An interdisciplinary literature review, framework, and future research agenda. Technovation. https://doi.org/10.1016/j.technovation.2023.102716. DOI: https://doi.org/10.1016/j.technovation.2023.102716
Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 7, 81542-81554. https://doi.org/10.1109/ACCESS.2019.2923707 DOI: https://doi.org/10.1109/ACCESS.2019.2923707
Muhammad, Y., Tahir, M., Hayat, M., & Chong, K. T. (2020). Early and accurate detection and diagnosis of heart disease using intelligent computational model. Scientific reports, 10(1), 19747. https://doi.org/10.1038/s41598-020-76635-9 DOI: https://doi.org/10.1038/s41598-020-76635-9
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216-1219. https://doi.org/10.1056/NEJMp1606181 DOI: https://doi.org/10.1056/NEJMp1606181
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358. https://doi.org/10.1056/NEJMra1814259 DOI: https://doi.org/10.1056/NEJMra1814259
Reddy, S., Fox, J., & Purohit, M. P. (2019). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medicine, 112(1), 22-28. https://doi.org/10.1177/0141076818815510 DOI: https://doi.org/10.1177/0141076818815510
Ripan, R. C., Sarker, I. H., Hossain, S. M. M., Anwar, M. M., Nowrozy, R., Hoque, M. M., … et al. (2021). A data-driven heart disease prediction model through K-means clustering-based anomaly detection. SN Computer Science, 2(2), 112. https://doi.org/10.1007/s42979-021-00518-7 DOI: https://doi.org/10.1007/s42979-021-00518-7
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003 DOI: https://doi.org/10.1016/j.neunet.2014.09.003
Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589-1604. https://doi.org/10.1109/JBHI.2017.2767063 DOI: https://doi.org/10.1109/JBHI.2017.2767063
Taylor, K., Properzi, F., Bhatti, S., & Ferris, K. (2020). Digital transformation—Shaping the future of European healthcare. United Kingdom: Deloitte Centre for Health Solutions.
Topol, E. (2019). Deep medicine: how artificial intelligence can make healthcare human again. Hachette UK.
UCI Machine Learning Repository. (2025). Heart Disease Data Set. Retrieved March 25, 2025, from https://archive.ics.uci.edu/dataset/45/heart+disease
Vîrgolici, O., & Virgolici, H. (2023). Predicting Prediabetes Using Simple a Multi-Layer Perceptron Neural Network Model. In ICIMTH (pp. 168-171). https://doi.org/10.3233/SHTI230453 DOI: https://doi.org/10.3233/SHTI230453
Vrigazova, B. (2021). The proportion for splitting data into training and test set for the bootstrap in classification problems. Business Systems Research: International Journal of the Society for Advancing Innovation and Research in Economy, 12(1), 228-242. https://doi.org/10.2478/bsrj-2021-0015 DOI: https://doi.org/10.2478/bsrj-2021-0015
Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3-13. https://doi.org/10.1016/j.techfore.2015.12.019 DOI: https://doi.org/10.1016/j.techfore.2015.12.019
World Health Organization. (2021). Cardiovascular diseases (CVDs). World Health Organization. Retrieved March 25, 2025, from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Xie, T., Liu, R., & Wei, Z. (2020). Improvement of the fast clustering algorithm improved by K-means in the Big Data. Applied Mathematics & Nonlinear Sciences, 5(1). DOI: https://doi.org/10.2478/amns.2020.1.00001
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2025 Uluslararası Avrasya Sosyal Bilimler Dergisi

Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.