Investigation of the effect of acute exercise on oxidative stress and thiol-disulfide homeostasis in soccer players
Abstract views: 38 / PDF downloads: 28
DOI:
https://doi.org/10.70736/jrolss.495Keywords:
Football, oxidative stress, thiol-disulfite homeostasisAbstract
The aim of this study was to investigate the effects of acute exercise on oxidative stress and thiol-disulfide homeostasis in male soccer players. Thirty-two male soccer players from Şanlıurfa 11 Nisan Sports Club, a Turkish Football Federation Regional Amateur League (RAL) team, with a mean age of 21.36±0.56 years, a mean body weight of 70.58±1.60 kg, a mean height of 178.31±1.62 cm, and a mean body mass index (BMI) of 22.16±0.26 kg/m², with a sports history of at least 7 years, who regularly train 2 hours a day, 5 days a week, participated voluntarily in the study. After a 15-minute warm-up exercise, the Conconi Test was performed until fatigue was reached. Pre- and post-exercise oxidative stress levels and thiol-disulfide homeostasis (TDH) parameters were analyzed by an automated spectrophotometric method. SPSS 26 (Statistical package for social sciences) package program was used in the statistical analysis of the data. “Paired sample t test” was used to determine the differences between the pre-test and post-test. The significance between the differences was determined at P<0.05 level. Although an increase in oxidative stress levels was observed after exercise, this increase was not statistically significant (p>0.05). When thiol-disulfide homeostasis before and after exercise was compared, it was found that post-exercise values were significantly higher (p<0.05). This study, it is noteworthy that the negative effects of acute exercise on oxidative stress were not observed in soccer players in the literature. This may be explained by the strengthening of the antioxidant defense mechanisms of the participating soccer players due to their long-term sports history and the related positive adaptations. It is thought that regular and long-term exercise is effective in maintaining thiol-disulfide balance by strengthening the body’s antioxidant defense system, thus reducing the negative effects of oxidative stress and minimizing disease risks.
References
Akgün, N. (1994). Egzersiz fizyolojisi. İzmir: Ege Üniversitesi Yayınları.
Alderman, C. J. J., Shah, S., Foreman, J. C., Chain, B. M., & Katz, D. R. (2002). The role of advanced oxidation protein products in regulation of dendritic cell function. Free Radical Biology and Medicine, 32(4), 377-385. DOI: https://doi.org/10.1016/S0891-5849(01)00735-3
Algül, S., & Özçelik, O. (2017). Günün farklı zamanlarında yapılan futbol maçlarında oksidan-antioksidan dengenin incelenmesi. Genel Tıp Dergisi, 27(4), 129-135. DOI: https://doi.org/10.15321/GenelTipDer.2017.158
Altinel Acoğlu, E., Erel, O., Yazilitaş, F., Bulbul, M., Oğuz, M. M., Yucel, H… et al. (2018). Changes in thiol/disulfide homeostasis in juvenile idiopathic arthritis. Pediatrics Internaational, 60(6), 593-596. DOI: https://doi.org/10.1111/ped.13569
Aslankoç, R., Demirci, D., İnan, Ü., Yıldız, M., Öztürk, A., Çetin, M. … et al. (2019). Oksidatif stress durumunda antioksidan enzimlerin rolü- Süperoksit dismutaz (SOD), katalaz (CAT) ve glutatyon peroksidaz (GPX). Medical Journal of Süleyman Demirel University, 26(3), 362-69. DOI: https://doi.org/10.17343/sdutfd.566969
Balakrishnan, S. D., & Anuradha, C. V. (1998). Exercise depletion of antioxidants and antioxidant manipulation. Cell Biochemistry and Function, 16(4), 269-275. DOI: https://doi.org/10.1002/(SICI)1099-0844(1998120)16:4<269::AID-CBF797>3.3.CO;2-2
Banfi, G., Malavazos, A., & Iorio, E. (2005). Plasma oxidative stress biomarkers, nitric oxide and heat shock protein 70 in trained elite soccer players. European Journal of Applied Physiology, 95(5-6), 298-303. DOI: https://doi.org/10.1007/s00421-005-0104-6
Barnham, K. J., Masters, C. L., & Bush, A. I. (2004). Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, 3(3), 205-214. DOI: https://doi.org/10.1038/nrd1330
Berzosa, C., Cebrián, I., & Fuentes-Broto, L. J. (2011). Acute exercise increases plasma total antioxidant status and antioxidant enzyme activities in untrained men. Journal of Biomedicine and Biotechnology, 2011, 540458. DOI: https://doi.org/10.1155/2011/540458
Biswas, S., Chida, A.S. & Rahman, I. (2006). Redox modifications of protein–thiols: Emerging roles in cell signaling. Biochemical Pharmacology, 71(5),551- 64. DOI: https://doi.org/10.1016/j.bcp.2005.10.044
Bloomer, R. J. (2008). Effect of exercise on oxidative stress biomarkers. Advances in Clinical Chemistry, 46, 1-50. DOI: https://doi.org/10.1016/S0065-2423(08)00401-0
Cazzola, R., Russo-Volpe, S., Cervato, G., & Cestaro, B. (2003). Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. European Journal of Clinical Investigation, 33(10), 924-930. DOI: https://doi.org/10.1046/j.1365-2362.2003.01227.x
Celi, P. (2011). Biomarkers of oxidative stress in ruminant medicine. Immunopharmacology and Immunotoxicology, 33(2),233-240. DOI: https://doi.org/10.3109/08923973.2010.514917
Chianeh, Y. R., & Prabhu, K. (2014). Protein thiols as an indicator of oxidative stress. Archives of Medical Review Journal, 23(3), 443-456. DOI: https://doi.org/10.17827/aktd.72428
Circu, M.L. & Aw, T.Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine. 48(6),749-62. DOI: https://doi.org/10.1016/j.freeradbiomed.2009.12.022
Conconi, F., Ferrari, M., Ziglio, P.G., Droghetti, P., & Codeca, L. (1982). Determination of the anaerobic threshold by a noninvasive field test in runners. Journal of Applied Physiology, 52(4), 869-873. DOI: https://doi.org/10.1152/jappl.1982.52.4.869
Çetinkaya, A. (2020). Ratlarda amiloid beta1-42 ile oluşturulan deneysel alzheimer modelinde tiyol disülfit homeostazisi. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 10(3), 343-347. DOI: https://doi.org/10.33631/duzcesbed.698151
Çınar, M., Yıldırım, E., Yiğit, A.A., Yalçınkaya, I., Duru, Ö., Kısa, Ü. & Atmaca, N. (2014). Effects of dietary supplementation with vitamin c and vitamin e and their combination on growth performance, some biochemical parameters, and oxidative stress ınduced by copper toxicity in broilers. Biological Trace Element Research, 158, 186-196. DOI: https://doi.org/10.1007/s12011-014-9926-6
Dulgeroglu, Y. & Bandirmali, O. (2022). Thiol/disulfide homeostasis in gastritis with or without Helicobacter pylori. International Journal of Medical Biochemistry, 5(3),152-157. DOI: https://doi.org/10.14744/ijmb.2022.74755
Duthie, G. G., Robertson, J. D., & Morrice, P. C. (1990). Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Archives of Biochemistry and Biophysics, 282(1), 78-83. DOI: https://doi.org/10.1016/0003-9861(90)90089-H
Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103-1111. DOI: https://doi.org/10.1016/j.clinbiochem.2005.08.008
Erel, O., & Neselioğlu, S. (2014). A novel and automated assay for thiol/disulphide homeostasis. Clinical Biochemistry, 47(18), 326-332. DOI: https://doi.org/10.1016/j.clinbiochem.2014.09.026
Fidancı, B. (2023). Oksitetrasiklin uygulanan ratlarda oksidatif stress üzerine boric asidin etkileri, Kırıkkale Üniversitesi Sağlık Bilimleri Enstitüsü, (Yüksek Lisans Tezi), Kırıkkale, Türkiye.
Go, Y.-M., & Jones, D. P. (2011). Cysteine/cystine redox signaling in cardiovascular disease. Free Radical Biology and Medicine, 50(4), 495-509. DOI: https://doi.org/10.1016/j.freeradbiomed.2010.11.029
Göl, M., & Özkaya, B. (2019). Regular exercise, overweight/obesity and sedentary lifestyle cause adaptive changes in thiol–disulfide homeostasis. Anais da Academia Brasileira de Ciências, 91(2), e20180447. DOI: https://doi.org/10.1590/0001-3765201920180547
Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford university press, USA. https://doi.org/10.1093/ acprof:oso/9780198717478.001.0001 DOI: https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
Jones, D. P., & Liang, Y. (2009). Measuring the poise of thiol-disulfide couples in vivo. Free Radical Biology and Medicine, 47(10), 1329-1338. DOI: https://doi.org/10.1016/j.freeradbiomed.2009.08.021
Kalyon, T. A. (1997). Spor hekimliği sporcu sağlığı ve spor sakatlıkları (4. baskı). Ankara.
Kanter, M. M., Nolte, L. A., & Holloszy, J. O. (1993). Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. Journal of Applied Physiology, 74(2), 965-969. DOI: https://doi.org/10.1152/jappl.1993.74.2.965
Kızıltunç, E., Gök, M., Kundi, H., Çetin, M., Topçuoğlu, C., & Gülkan, B. (2016). Plasma thiols and thiol-disulfide homeostasis in patients with isolated coronary artery ectasia. Atherosclerosis, 253, 209-213. DOI: https://doi.org/10.1016/j.atherosclerosis.2016.07.904
Kumandaş, A., Karslı, B., Kürüm, A., Çınar, M. & Elma, E. (2019). Comparison of the effects of zinc- silver cream and Nigella sativa oil on wound healing and oxidative stress in the wound model in rats, Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(1),33-40. DOI: https://doi.org/10.33988/auvfd.563491
Matteucci, E., & Giampietro, O. (2010). Thiol signalling network with an eye to diabetes. Molecules, 15(12), 8890-8903. DOI: https://doi.org/10.3390/molecules15128890
Ohno, H., Yahata, T., Sato, Y., Yamamura, K., & Taniguchi, N. (1984). Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men. Journal of Applied Physiology, 57(1), 173-176. DOI: https://doi.org/10.1007/BF00640658
Okur, E.C., Orhan, M.F. & Elmas, B. (2021). Thiol disulfide balance in children with vitamin B12 deficiency. Cukurova Medical Journal, 46(3),1278-1284 DOI: https://doi.org/10.17826/cumj.909342
Ortenblad, N., Madsen, K., & Djurhuus, M. S. (1997). Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans. American Journal of Physiology, 272(4), R1258-R1263. DOI: https://doi.org/10.1152/ajpregu.1997.272.4.R1258
Ozyazici, S., Karateke, F., Turan, U., Kuvvetli, A., Kilavuz, H., Karakaya, B., … et al. (2016). A novel oxidative stress mediator in acute appendicitis: Thiol/disulphide homeostasis. Mediators of Inflammation, 2016(1) 6761050. DOI: https://doi.org/10.1155/2016/6761050
Öktem, A., Zenciroğlu, A., Dilli, D., Bidev, D., Özyazıcı, A., Özçelik, E. & Erel, Ö. (2022). Thiol disulfide homeostasis in neonatal patients with urinary tract infection. American Journal of Perinatology, 39(13), 1460-1464. DOI: https://doi.org/10.1055/s-0040-1722656
Özçiflikçi, H. (2023). Potasyum dikromat verilen ratlarda oksidatif stres ve inflamatuvar cevap üzerine kuersetinin etkisi, Kırıkkale Üniversitesi Sağlık Bilimleri Enstitüsü, (Yüksek Lisans Tezi), Kırıkkale, Türkiye.
Pala, R., & Savucu, Y. (2011). Boks Milli Takımının Avrupa Şampiyonası’na hazırlık kampları süresince bazı fiziksel ve oksidatif stres parametrelerinin incelenmesi. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi, 25(3), 115-120.
Pialoux, V., Mounier, R., Ponsot, E., Rock, E., Mazur, A., & Dufour, S. (2006). Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance. European Journal of Clinical Nutrition, 60(12), 1345-1354. DOI: https://doi.org/10.1038/sj.ejcn.1602462
Polidori, M. C., Mecocci, P., Cherubini, A., & Senin, U. (2000). Physical activity and oxidative stress during aging. International Journal of Sports Medicine, 21(3), 154-157. DOI: https://doi.org/10.1055/s-2000-8881
Radák, Z., Kaneko, T., Tahara, S., Nakamoto, H., Ohno, H., & Sasvári, M., … et al. (1999). The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: Evidence for beneficial outcomes. Free Radical Biology and Medicine, 27(1-2), 69-74. DOI: https://doi.org/10.1016/S0891-5849(99)00038-6
Radák, Z., Pucsuk, J., Boros, S., Josfai, L., & Taylor, A. W. (2000). Changes in urine 8-hydroxydeoxyguanosine levels of super-marathon runners during a four-day race period. Life Sciences, 66(18), 1763-1767. DOI: https://doi.org/10.1016/S0024-3205(00)00499-9
Radovanovic, D. (2008). Effects of specially designed training on functional abilities and blood markers of oxidative stress in elite judo athletes. In Proceedings of the World Congress of Performance Analysis of Sport VIII (pp. 393-397). Magdeburg, Germany: Otto-von-Guericke-Universität.
Stocker, R., & Keaney, J. F. (2004). Role of oxidative modifications in atherosclerosis. Physiological Reviews, 84(4), 1381-1478. DOI: https://doi.org/10.1152/physrev.00047.2003
Şahin, Y., Alçığır, M.E., Şenol, A., Özden, H., Ekici, H., Yıldırım, E. … et al. (2022). Protective Effect of krill oil against gentamicin ınduced oxidative stress mediated nephrotoxicity in rats. Kocatepe Veterinary Journal, 15(1),38-46. DOI: https://doi.org/10.30607/kvj.1051733
Şen, G., Oktay, M. N., Evci, Ş., Gökpınar, S., & Şenol, A. (2023). The effect of using different litter materials in broiler rearing on performance, carcass yield, antioxidant status, some litter parameters, and coccidiosis oocysts. Turkish Journal of Veterinary & Animal Sciences, 47(5),487-495. DOI: https://doi.org/10.55730/1300-0128.4317
Şinoforoğlu, T., Özel, Ü., Kılıç, N., & Sevim, Y. (2006, Kasım 3-5). Akut egzersizin futbolcularda oksidatif stres üzerine etkisi. 9. Uluslararası Spor Bilimleri Kongresi, Muğla, 413-416.
Tabakoğlu, E. & Durgut, R. (2013). Veteriner Hekimlikte oksidatif stres ve bazı önemli hastalıklarda oksidatif stresin etkileri. AVKAE Dergi 3(1), 69-75.
Teixeira de Lemos, E., Oliveira, J., Páscoa Pinheiro, J., & Reis, F. (2012). Regular physical exercise as a strategy to improve antioxidant and anti‐inflammatory status: Benefits in type 2 diabetes mellitus. Oxidative Medicine and Cellular Longevity, 2012(1), 1-15. DOI: https://doi.org/10.1155/2012/741545
Teixeira, V. H., Valente, H. F., Casal, S. I., Marques, F. P., & Moreira, P. A. (2013). Blood antioxidant and oxidative stress biomarkers acute responses to a 1000-m kayak sprint in elite male kayakers. Journal of Sports Medicine and Physical Fitness, 53(1), 71-79.
Terzi, O. S., Kara, E., Şenel, Y., Ceylan, E., Neşelioğlu, S., & Erel, Ö. (2023). Dynamic thiol disulphide homeostasis and ischemia modified albumin levels in neonatal calf diarrhea. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 70(1), 81-86. DOI: https://doi.org/10.33988/auvfd.928731
Topuz, M., Kaplan, M., Akkus, O., Sen, O., Yunsel. H.D., & Gur, M. (2016). The prognostic importance of thiol/disulfide homeostasis in patients with acute pulmonary thromboembolism. The American Journal of Emergency Medicine, 34(12), 2315-19. DOI: https://doi.org/10.1016/j.ajem.2016.08.039
Turgut, A., Özgürbüz, C., Azboy, O., Akyüz, F., İnal, M., & Göktürk, E. (1999). Yüzücülerde aerobik ve anaerobik ağırlıklı yüklenmelerde oksidatif stresin karşılaştırılması. Spor Hekimliği Dergisi, 34(1), 1-10.
Wiecek, M., Maciejczyk, M., Szymura, J., & Szyguła, Z. (2015). Changes in oxidative stress and acid-base balance in men and women following maximal-intensity physical exercise. Physiological Research, 64(1), 93-102. DOI: https://doi.org/10.33549/physiolres.932744
Witko-Sarsat, V., Friedlander, M., Nguyen-Khoa, T., Capeillère-Blandin, C., Nguyen, A. T., & Canteloup, S. (1998). Advanced oxidation protein products as a novel mediator of inflammation and monocyte activation in chronic renal failure. Journal of Immunology, 161(5), 2524-32. DOI: https://doi.org/10.4049/jimmunol.161.5.2524
Zalavras, A., Fatouros, I. G., & Deli, C. K. (2015). Age-related responses in circulating markers of redox status in healthy adolescents and adults during the course of a training macrocycle. Oxidative Medicine and Cellular Longevity, 2015(1). DOI: https://doi.org/10.1155/2015/283921
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of ROL Sport Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.