Applications of wearable sensor technology for health monitoring in sports: Laboratory setup and requirements and future perspectives


Abstract views: 0 / PDF downloads: 0

Authors

DOI:

https://doi.org/10.70736/ijoess.1663

Keywords:

3D Printing, Health monitoring, Sports Science, Structural Health Monitoring (SHM), Wearable sensors

Abstract

Wearable sensor technology is at the forefront of innovation, transforming health monitoring and sports sciences with its ability to collect and analyze real-time data. These sensors, integrated seamlessly into clothing, accessories, or skin-like patches, enable non-invasive tracking of physiological parameters such as heart rate, body temperature, and movement patterns. For athletes, this data provides actionable insights to optimize performance, prevent injuries, and support recovery. Beyond individual health, wearable sensors are pivotal in structural health monitoring (SHM), where they ensure the safety and functionality of large sports facilities by detecting stress, vibrations, and early structural weaknesses. Driven by advancements in digitization, wireless technologies, recycled materials, and emerging quantum materials, wearable sensors have undergone significant evolution through enhanced manufacturing processes such as 3D printing. This dual application in human health and structural integrity highlights their critical role in creating safer, smarter, and more sustainable environments. This study explores the transformative potential of wearable sensors in sports sciences and structural monitoring, emphasizing their use in optimizing athlete health and maintaining infrastructure safety. Additionally, it examines the infrastructure and equipment requirements for establishing a cutting-edge wearable sensor research laboratory in a university setting. By bridging human well-being and structural reliability, wearable sensor technology advances not only health and performance but also innovation and sustainability, marking it as a cornerstone for future progress in sports and health sciences.

References

Akhtar, K., Khan, S. A., Khan, S. B., & Asiri, A. M. (2018). Scanning electron microscopy: Principle and applications in nanomaterials characterization. In K. Akhtar, S. A. Khan, S. B. Khan, & A. M. Asiri (Eds.), Scanning electron microscopy: Principle and applications in nanomaterials characterization (pp. 113–145). Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_4

Ali, Md. A., Hu, C., Yttri, E. A., & Panat, R. (2021). Recent advances in 3D printing of biomedical sensing devices. Advanced Functional Materials, 2107671. https://doi.org/10.1002/ADFM.202107671

Ali, S. M., Noghanian, S., Khan, Z. U., Alzahrani, S., Alharbi, S., Alhartomi, M., ... et al. (2025). Wearable and flexible sensor devices: Recent advances in designs, fabrication methods, and applications. Sensors, 25(5), 1377. https://doi.org/10.3390/s25051377

Altıparmak, S. C., Yardley, V. A., Shi, Z., & Lin, J. (2022). Extrusion-based additive manufacturing technologies: State of the art and future perspectives. Journal of Manufacturing Processes, 83, 760-781. https://doi.org/10.1016/j.jmapro.2022.09.032

Avci, O., Abdeljaber, O., Gül, M., Catbas, F. N., Celik, O., & Kiranyaz, S. (2024). Monitoring framework development for a network of multiple laboratory structures. Journal of Building Engineering, 92, 109771. https://doi.org/10.1016/j.jobe.2024.109771

Ayushi, Gupta, N., Kumar, N., & Sachdeva, A. (2023). Flexible wearable devices using extrusion-based 3D printing approach: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.07.239

Banik, O., Salve, A. L., Kumar, P., Kumar, S., & Banoth, E. (2024). Electrically conductive nanomaterials: transformative applications in biomedical engineering - A review. Nanotechnology, 35(50), 502001. https://doi.org/10.1088/1361-6528/ad857d

Barros, A., Braunger, M. L., de Oliveira, R. F., & Ferreira, M. (2023). Sensing materials: Functionalized advanced carbon-based nanomaterials. In Encyclopedia of Sensors and Biosensors (pp. 254-268). https://doi.org//10.1016/B978-0-12-822548-6.00014-5

Bojja, S., Rajitha, A., Aravinda, K., Nagpal, A., Kalra, R., & Radi, U. K. (2024). Advanced machine learning techniques for data prediction in WSNS. In 2nd International Conference on Opto-electronic and Telecommunication Technologies (OTCON), 1–6. https://doi.org/10.1109/otcon60325.2024.10687955

Cantarella, G., Catania, F., Corsino, D., & Münzenrieder, N. (2023). Unobtrusive thin-film devices and sustainable green electronics. In 2023 IEEE International Flexible Electronics Technology Conference (IFETC) (pp. 1-3) https://doi.org/10.1109/ifetc57334.2023.10254853

Chandrakumar, C., Prasanna, R., Stephens, M., & Tan, M. L. (2022). Earthquake early warning systems based on low-cost ground motion sensors: A systematic literature review. Frontiers in Sensors, 3. https://doi.org/10.3389/fsens.2022.1020202

Charumathi, K. J., Rishika, S., Vishnupriya, V., & Kumari, K. A. (2024). Secure health data transmission: an efficient rc6 encryption approach for wireless body composition scales. In 15th International Conference on Computing Communication and Networking Technologies, 1–6. https://doi.org/10.1109/icccnt61001.2024.10724447

Čolaković, A., Džubur, A. H., & Karahodža, B. (2021). Wireless communication technologies for the Internet of Things. Science, Engineering and Technology, 1(1), 1-14.

Da Silva, L. (2024). Wearable technology in sports monitoring performance and health metrics. Revista De Psicología Del Deporte (Journal of Sport Psychology), 33(2), 250-258.

De Fazio, R., Mastronardi, V., De Vittorio, M., & Visconti, P. (2023). Wearable sensors and smart devices to monitor rehabilitation parameters and sports performance: An overview. Sensors, 23(4), 1856. https://doi.org/10.3390/s23041856

De Lima, L. F., Ferreira, A. L., & de Araujo, W. R. (2023). Sensing interfaces: materials for wearable sensors. In Sensors and Biosensors.

De Sario Velasquez, G. D., Borna, S., Maniaci, M. J., Coffey, J. D., Haider, C. R., Demaerschalk, B. M., ... et al. (2024). Economic perspective of the use of wearables in health care: A systematic review. Mayo Clinic Proceedings: Digital Health, 2(3), 299-317.https://doi.org/10.1016/j.mcpdig.2024.05.003

Dhibar, S., Zenker, S., Jain, S., Afshari, R., Oz, Y., Zheng, Y., … et al. (2024). A highly stretchable, conductive, and transparent bioadhesive hydrogel as a flexible sensor for enhanced real-time human health monitoring. Advanced Materials, 36(34), 2404225. https://doi.org/10.1002/adma.202404225

Dinkar, A. K., Haque, Md. A., & Choudhary, A. (2024). Enhancing IoT data analysis with machine learning: A comprehensive overview. Latia: International Journal of Science and Technology, 2(9). https://doi.org/10.62486/latia20249

Domb, M. (2019). Wearable Devices and their Implementation in Various Domains. IntechOpen. https://doi.org/10.5772/INTECHOPEN.86066

Fatimah, I., Purwiandono, G., Fadillah, G., & Wicaksono, W. P. (2023). Functional nanomaterials for characterization techniques. In Functional Nanomaterials for Sensors (pp. 39-59). CRC Press.

Flynn, C. D., Chang, D., Mahmud, A., Yousefi, H., Das, J., Riordan, K. T., ... et al. (2023). Biomolecular sensors for advanced physiological monitoring. Nature Reviews Bioengineering, 1(8), 560-575.

Fu, Q. Q. (2024). Flexible electronics for wearable sensing systems. In Portable and Wearable Sensing Systems: Techniques, Fabrication, and Biochemical Detection (pp. 111-137).

Gobinath, A., Rajeswari, P., Kumar N, S., & Anandan, M. (2024). Wearable sensor and AI algorithm integration for enhanced natural disaster preparedness and response (pp. 175–188). IGI Global. https://doi.org/10.4018/979-8-3693-3362-4.ch010

Gomez, O. N., & Giang, N. T. (2024). The essence of motor control. A Unified System Fitness Design: Concepts of Holistic and Inclusive Fitness Framework, 79.

Goverdovsky, V., von Rosenberg, W., Nakamura, T., Looney, D., Sharp, D. J., Papavassiliou, C., … et al. (2016). Hearables: Multimodal physiological in-ear sensing. arXiv: Medical Physics. https://arxiv.org/abs/1609.03330

Gudmundsson, J., & Horton, M. (2017). Spatio-temporal analysis of team sports. ACM Computing Surveys, 50(2), 22. https://doi.org/10.1145/3054132

Haghighi, A. (2023). Material Extrusion. In Springer Handbooks. https://doi.org/10.1007/978-3-031-20752-5_21

Hamidi, N., Abdullah, J., Shuib, R. K., Aziz, I., & Namazi, H. (2024). 4D printing of polylactic acid (PLA)/thermoplastic polyurethane (TPU) shape memory polymer – A review. Engineering Research Express, 6(2), 022002. https://doi.org/10.1088/2631-8695/ad337e

Hammed, V., Eyo, D. E., Omoloja, T. O., Kolawole, M. I., Adeyemi, A., & Kudoro, T. A. (2024). A review of quantum materials for advancement in nanotechnology and materials science. World Journal of Advanced Research and Reviews, 23(2), 1735–1746. https://doi.org/10.30574/wjarr.2022.23.2.2547

Hassani, S., & Dackermann, U. (2023). A systematic review of advanced sensor technologies for non-destructive testing and structural health monitoring. Sensors, 23(4), 2204. https://doi.org/10.3390/s23042204

Hou, S., Liang, D., Li, Y., Li, Z., Liu, M., Yu, X., & Han, Y. (2024). Highly stretchable PEDOT:PSS dry electrodes for biopotential monitoring. ACS Applied Polymer Materials, 6(14), 7858–7867. https://doi.org/10.1021/acsapm.4c01233

Ianni, B. C., Ross, D. D., Kahler, C. A., Thomas, K., Hoffman, J. H. K., & Herron, P. M. (2015). Real-time event monitoring system for basketball-related activities. U.S. Patent Application No. US20160096071A1. https://patents.google.com/patent/US20160096071A1/en

Kajzar, M. (2024). Wearable devices for training and patient monitoring: A comprehensive review. Quality in Sport. https://doi.org/10.12775/qs.2024.29.55667

Kango, M. A., Oza, S., Shirsat, A. S., & Kanitkar, M. (2024). Radiation pattern measurement for UWB body worn antenna. In International Conference on Communication and Signal Processing (ICCSP).

Kenjayeva, B., Kizdarbekova, M., & Murzabekov, M. (2024). Forecasting sports-related injuries using wearable devices and data analysis methods. Retos: Nuevas Tendencias en Educación Física, Deportes y Recreación. https://doi.org/10.47197/retos.v58.109162

Kilaru, A., Patidar, D., Reddy, U., Nagpal, A., Habelalmateen, M. I., & Praveen. (2024). Exploring the integration of wearable sensor technologies in professional sports for enhanced athletic performance and injury prevention. In 2nd International Conference on Opto-electronic and Telecommunication Technologies (OTCON). https://doi.org/10.1109/OTCON60325.2024.10688309

Kolotovichev, Y. A., & Shakhramanyan, A. M. (2022). An automated structural health monitoring system developed for Ekaterinburg Arena. Vestnik MGSU, 17(3), 314–330. https://cyberleninka.ru/article/n/avtomatizirovannyy-monitoring-deformatsii-nesuschih-konstruktsiy-ekaterinburg-areny (date of access: 04.06.2025).

Kovoor, M., Durairaj, M., Karyakarte, M., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. Measurement: Sensors, 29, 101054. https://doi.org/10.1016/j.measen.2024.101054

Kumar, K., Sharma, A., & Tripathi, S. L. (2021). Sensors and their application. In Sensors and their application. https://doi.org/10.1016/B978-0-323-85172-5.00021-6

Kumar, R., Sadeghi, K., Jang, J. Y., & Seo, J. H. (2023). Mechanical, chemical, and bio-recycling of biodegradable plastic: A review. Science of The Total Environment, 877, 163446. https://doi.org/10.1016/j.scitotenv.2023.163446

Li, D., Yang, Y., Elias, A. L., Yan, N., & Guo, F. (2023). Biopolymer composites material extrusion and their applications: a review. Advanced Engineering Materials. https://doi.org/10.1002/adem.202301048

Li, H. N., Ren, L., Jia, Z. G., Yi, T. H., & Li, D. S. (2016). State-of-the-art in structural health monitoring of large and complex civil infrastructures. Journal of Civil Structural Health Monitoring, 6, 3-16. https://doi.org/10.1007/s13349-015-0108-9

Li, Y., Hu, K., Xu, Y., Pei, Y., Yang, Z., Han, L., ... et al. (2024). Research progress of 3D printing silicone rubber materials. In Polymer Science and Technology (pp. 217-238). Springer, Singapore. https://doi.org/10.1007/978-981-99-9955-2_16

Liu, L., & Zheng, F. (2024). An improved cohesive hierarchical clustering for indoor air quality monitoring in smart gymnasium with healthy sport areas. Alexandria Engineering Journal, 105, 204-217. https://doi.org/10.1016/j.aej.2024.06.082

Liu, Y., Luo, T., Ding, C., Liu, X., Li, J., & Yang, R. (2024). Progress in the application of flexible and wearable electrochemical sensors in monitoring biomarkers of athletes. Advanced Materials and Technologies, 9(8), 2400619. https://doi.org/10.1002/admt.202400619

Lu, T., Ji, S., Jin, W., Yang, Q., Luo, Q., & Ren, T.-L. (2023). Biocompatible and long-term monitoring strategies of wearable, ingestible and implantable biosensors: reform the next generation healthcare. Sensors, 23(6), 2991. https://doi.org/10.3390/s23062991

Lucà, F., Turrisi, S., Zappa, E., & Cigada, A. (2024). Exploring human-crowd interaction in structural monitoring: Insights from two decades of events at the g. meazza stadium. e-Journal of Nondestructive Testing, 29(7). https://doi.org/10.58286/29811

Lv, F. (2024). Development of athlete health monitoring and early warning system based on sensor data. Journal of Electrical Systems. https://doi.org/10.52783/jes.3118

Lv, M., Qiao, X., Li, Y., Zeng, X., & Luo, X. (2023). A stretchable wearable sensor with dual working electrodes for reliable detection of uric acid in sweat. Analytica Chimica Acta, 1280, 342154. https://doi.org/10.1016/j.aca.2023.342154

Menard, K. P., & Menard, N. R. (2015). Dynamic mechanical analysis in the analysis of polymers and rubbers. In Encyclopedia of Polymer Science and Technology. https://doi.org/10.1002/0471440264.PST102.PUB2

Miller, Z. L., Fairbanks, T., & Maldonado, C. (2023). The use of stereolithography (SLA) additive manufacturing in space-based instrumentation. 2023 IEEE Aerospace Conference. https://doi.org/10.1109/AERO55745.2023.10115988

Moreno-Rueda, D., Narvaez, D., McCarthy, E., McCormack, L., & Newell, B. (2024). 3D printed flexible tactile sensor for rehabilitation. ASME International Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS). https://doi.org/10.1115/SMASIS2024-140240

Moscato, S., Orlandi, S., Di Gregorio, F., Lullini, G., Pozzi, S., Sabattini, L., Chiari, L., & La Porta, F. (2023). Feasibility interventional study investigating PAIN in neurorehabilitation through wearabLE SensorS (PAINLESS): A study protocol. BMJ Open, 13. https://doi.org/10.1136/bmjopen-2023-073534

Naidu, M. M., & Dhote, D. (2025). Development of energy-harvesting wearable biomedical devices: Designing self-powered sensors for continuous health monitoring. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 11(1), 728–732. https://doi.org/10.32628/cseit2511113

Naveed, N., & Anwar, M. N. (2024). Sustainable manufacturing through digital multi-material 3D printing. 2024 International Conference on Advanced Computing (ICAC). https://doi.org/10.1109/ICAC61394.2024.10718858

Norton, P. J., Katsikogianni, M. G., Ansell, D., Chang, C.-Y., & Thornton, J. (2023). P15 Surface engineering of novel polydimethylsiloxane composites to attract bacteria: Potential to treat chronic infected wounds and reduce antimicrobial resistance. British Journal of Dermatology, 189(Suppl. 1), ljad174.036. https://doi.org/10.1093/bjd/ljad174.036

Papapostolou, V., Zhang, H., Feenstra, B. J., & Polidori, A. (2017). Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions. Atmospheric Environment, 171, 82-90. https://doi.org/10.1016/j.atmosenv.2017.10.003

Park, T., Leem, J. W., Kim, Y. L., & Lee, C. H. (2025). Photonic nanomaterials for wearable health solutions. Advanced Materials, 37(1), 2418705. https://doi.org/10.1002/adma.202418705

Pekgor, M., Algin, A., & Toros, T. (2025). RFID-embedded mattress for sleep disorder detection for athletes in sports psychology. Scientific Reports, 15(1), 14697. https://doi.org/10.1038/s41598-025-96311-0

Pekgor, M., Nikzad, M., Arablouei, R., & Masood, S. (2021). Sensor-based filament fabrication with embedded RFID microchips for 3D printing. Materials Today: Proceedings, 46, 124-130. https://doi.org/10.1016/j.matpr.2020.06.456

Persons, A. K., Ball, J. E., Freeman, C., Macias, D. M., Simpson, C. L., Smith, B. K., … et al. (2021). Fatigue testing of wearable sensing technologies: issues and opportunities. Materials, 14(15), 4070. https://doi.org/10.3390/ma14154070

Poddar, S., Kumar, V., & Kumar, A. (2017). A comprehensive overview of inertial sensor calibration techniques. Journal of Dynamic Systems, Measurement, and Control, 139(1), 011006. https://doi.org/10.1115/1.4034419

Prabha, K. R., Nataraj, B., Karthik, M., Mahiizharasu, D., & Saran, R. (2024). Sports analysis via wearable device. 2024 International Conference on Secure Cyber Computing and Communications (ICOSEC). https://doi.org/10.1109/icosec61587.2024.10722405

Ravizza, A., De Maria, C., Di Pietro, L., Sternini, F., Audenino, A. L., & Bignardi, C. (2019). Comprehensive review on current and future regulatory requirements on wearable sensors in preclinical and clinical testing. Frontiers in Bioengineering and Biotechnology, 7, 313. https://doi.org/10.3389/fbioe.2019.00313

Riente, A., Bianco, G. M., Fiore, L., Arduini, F., Marrocco, G., & Occhiuzzi, C. (2023). An RFID sensor with microfluidic for monitoring the PH of sweat during sport activity. 17th European Conference on Antennas and Propagation (EuCAP), 1–4. https://doi.org/10.23919/EuCAP57121.2023.10133044

Rodrigues, D., Barbosa, A. I., Rebelo, R., Kwon, I. K., Reis, R. L., & Correlo, V. M. (2020). Skin-integrated wearable systems and implantable biosensors: A comprehensive review. Biosensors, 10(7), 79. https://doi.org/10.3390/bios10070079

Rukundo, S. K. (2024). The impact of wearable technology on health monitoring. Rwanda International Journal of Physical Education, Sports and Recreation, 3(2), 5–8. https://doi.org/10.59298/rijpp/2024/325800

Sarmadi, H., Entezami, A., Yuen, K.-V., & Behkamal, B. (2023). Review on smartphone sensing technology for structural health monitoring. Measurement, 225, 113716. https://doi.org/10.1016/j.measurement.2023.113716

Sekeroglu, M. O., Pekgor, M., Algin, A., Toros, T., Serin, E., Uzun, M., … et al. (2025). Transdisciplinary innovations in athlete health: 3D-printable wearable sensors for health monitoring and sports psychology. Sensors, 25(5), 1453. https://doi.org/10.3390/s25051453

Shen, N., Li, Z., Wang, J., Liu, X., Ju, Y., Hu, Y., … et al. (2024). Designing methacrylic anhydride-based hydrogels for 3D bioprinting. International Journal of Bioprinting, 10(2). https://doi.org/10.36922/ijb.4650

Singh, N. K., Kumar, A., Singh, S., Kumar, V., Kumar, D., & Singh, S. (2024). Bio-signal processing. In Machine Learning in Health and Wellness (pp. 75–92). https://doi.org/10.58532/v3bjbt11p2ch1

Srivastava, P. K., Pandey, R. K., Srivastava, G. K., Anand, N., Krishna, K. R., Singhal, P., ... et al. (2024). Intelligent integration of wearable sensors and artificial intelligence for real-time athletic performance enhancement. Journal of Intelligent Systems & Internet of Things, 13(2). https://doi.org/10.54216/jisiot.130205

Sun, W., Guo, Z., Yang, Z., Wu, Y., Lan, W. X., Liao, Y., … et al. (2022). A review of recent advances in vital signals monitoring of sports and health via flexible wearable sensors. Sensors, 22(20), 7784. https://doi.org/10.3390/s22207784

Taskasaplidis, G., Fotiadis, D. A., & Bamidis, P. D. (2024). Review of stress detection methods using wearable sensors. IEEe Access, 12, 38219-38246.

Tedesco, S., Alfieri, D., Perez-Valero, E., Komaris, D.-S., Jordan, L., Belcastro, M., ... et al. (2021). A wearable system for the estimation of performance-related metrics during running and jumping tasks. Applied Sciences, 11(11), 5258. https://doi.org/10.3390/APP11115258

Vassiouk, V., Guseinov, D., Davydova, N., Lukashevich, D., & Minchenya, A. (2020). Experimental substantiation of the use of intelligent sensor systems in the assessment of biomechanical parameters of sport movements. Russian Journal of Biomechanics, 24(3), 322–330. https://doi.org/10.15593/rjbiomech/2020.3.03

Viccica, M., Giordano, M., & Galati, M. (2024). Additive manufacturing of flexible thermoplastic polyurethane (TPU): enhancing the material elongation through process optimisation. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-024-00790-y

Vo, T. M. N. (2024). Self-healing polymer materials: Basic concepts and applications. Middle East Journal of Applied Science & Technology, 7(3), 302–306. https://doi.org/10.46431/MEJAST.2024.7310

Wang, C., He, T., Zhou, H., Zhang, Z., & Lee, C. (2023). Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform. Bioelectronics in Medicine, 9. https://doi.org/10.1186/s42234-023-00118-1

Wang, S., & Urban, M. W. (2020). Self-healing polymers. Nature Reviews Materials, 5(8), 562-583.

Wei, P., Ning, Z., Ye, S., Sun, L., Yang, F., Wong, K., … et al. (2018). Impact analysis of temperature and humidity conditions on electrochemical sensor response in ambient air quality monitoring. Sensors, 18(2), 59. https://doi.org/10.3390/S18020059

White, M., De Lazzari, B., Bezodis, N. E., & Camomilla, V. (2024). Wearable sensors for athletic performance: A comparison of discrete and continuous feature-extraction methods for prediction models. Mathematics, 12(12), 1853. https://doi.org/10.3390/math12121853

Xue, Z., Gai, Y., Wu, Y., Liu, Z., & Li, Z. (2024). Wearable mechanical and electrochemical sensors for real-time health monitoring. Communications Materials, 5(1), 1–15. https://doi.org/10.1038/s43246-024-00658-2

Yadav, A. K., & Kumar, A. (2023). The smart analysis of prolong lifetime in industrial wireless sensor networks. International Conference on distributed Computing and Electrical Circuits and Electronics, 1-6 https://doi.org/10.1109/ICDCECE57866.2023.10151049

Yang, Y. (2024). Application of wearable devices based on artificial intelligence sensors in sports human health monitoring. Measurement: Sensors, 29, 101086. https://doi.org/10.1016/j.measen.2024.101086

Yang, Y., Yang, S., Xia, X., Hui, S. C., Wang, B., Zou, B., … et al. (2024). MXenes for wearable physical sensors toward smart healthcare. ACS Nano, 18(31), 22756–22791. https://doi.org/10.1021/acsnano.4c08258

Yu, Z., Luo, Y., Shen, J., Gao, X., Shang, J., & Wu, X. (2024). A printable metallic ink containing biphasic alloys for highly-reliable stretchable circuits. In IEEE International Conference on Electronic Packaging Technology (ICEPT). https://doi.org/10.1109/IPFA61654.2024.10690908

Zainuddin, A. A., Zakirudin, Z., Zulkefli, A. S. S., Mazli, A. M., Mohd Wardi, M. A. S., Fazail, M. N., Razali, M. I. Z., & Yusof, M. M. (2024). Artificial intelligence: A new paradigm for distributed sensor networks on the internet of things: A Review. International Journal on Perceptive and Cognitive Computing, 10(1), 16–28. https://doi.org/10.31436/ijpcc.v10i1.414

Zheng, J., Xu, S., Chen, M., Li, K., Wang, Z., Feng, H., … et al. (2024). Recyclable high-performance triboelectric nanogenerator enabled by dynamic covalently crosslinked polymers. Nano Energy. https://doi.org/10.1016/j.nanoen.2024.109288

Zhu, G.-J., Ren, P.-G., Hu, J., Yang, J., Jia, Y., Chen, Z., … et al. (2021). Flexible and anisotropic strain sensors with the asymmetrical cross-conducting network for versatile bio-mechanical signal recognition. ACS Applied Materials & Interfaces, 13(37), 44925–44934. https://doi.org/10.1021/ACSAMI.1C13079

Downloads

Published

2025-06-15

How to Cite

Pekgor, M., Algin, A., Serin, E., & Toros, T. (2025). Applications of wearable sensor technology for health monitoring in sports: Laboratory setup and requirements and future perspectives . International Journal of Eurasia Social Sciences, 16(60), 1002–1028. https://doi.org/10.70736/ijoess.1663